Deploying Federal Geospatial Services in the Cloud:

Federal Geographic Data Committee (FGDC) and GSA GeoCloud Sandbox Initiative

Doug Nebert
USGS/FGDC
April 12, 2011
Seattle, WA, AAG 2011
Background on GeoCloud Sandbox Initiative

- Initiated as an Architecture and Technology Working Group activity in December 2009 with a call to federal agencies to nominate geospatial applications for testing in the Cloud environment for a one-year prototyping process coordinated by FGDC and GSA.

- Eleven projects have been nominated by federal agencies as existing projects with existing software suites to be deployed in commercial- or government-hosted Cloud environments.

- Two deployment environments (platforms) were abstracted from the nominated projects: Open source service stack on Linux64 and a Commercial service stack on Windows 2008 Server.
Deploying Federal Geospatial Services in the Cloud
GeoCloud Goals and Activities

One-year+ project to test and monitor externally-hosted Cloud data and service solutions for the geospatial domain, to support the Geospatial Platform activity

Architectures

- Identify requirements-driven solution architectures and platforms for various sized deployments of geospatial data and services

Cost Models

- Document and assess cost models to support scalability, reliability, and redundancy

Certification

- Expedite FISMA (security) certification and accreditation for agency adoption of packaged solution architectures

Comparisons

- Support and collect cost comparison information from agencies for existing and externally-hosted Cloud solutions
- Document lessons learned and best practices

Activities, Outcomes

Acquire, compose, document, and deploy reference platform cloud that support Geospatial Platform standards

Monitor costs, loads, issues and options in support of OMB IT project document guidance

Certify Geospatial Solution Packages to facilitate re-use

Document Best Practices and guides to agencies on adoption of geospatial Cloud infrastructure
Notional Cloud Computing Stack

• GSA apps.gov is now offering Infrastructure as a Service (IaaS) solutions for acquisition.
• This is roughly equivalent to “shared-hosting” of raw computers with an operating system in the Cloud domain.
• Platform as a Service (PaaS) provides configurable software components and services.

http://en.wikipedia.org/wiki/Cloud_computing
Platform as a Service (PaaS)

“A cloud platform (**PaaS**) delivers a computing platform and/or solution stack as a service, generally consuming **cloud infrastructure** and supporting **cloud applications**. It facilitates deployment of applications without the cost and complexity of buying and managing the underlying hardware and software layers.”*

The GeoCloud is piloting the deployment of candidate services via **solution architectures** (suites of software) by composing reference platforms **on top of** the GSA IaaS to provide common geospatial capabilities.

GeoCloud Community Platform
Value Proposition

Pool of geospatial projects identified for cloud migration

Federal Platform Reference Implementations

Apps Need Platforms

Platforms Amplify IaaS Savings

GeoCloud Community Platform

FGDC App 1

FGDC App 2

8 More ...

Platform Savings

- Platform building time & effort
- Reduced maintenance costs
- Faster deployment
- Cost effective development / test

Infrastructure as A Service Savings

Hardware Savings
Operations Savings
Scalability Savings

Spatial Cloud Computing Session, AAG 2011, Seattle, WA
Platform as a Service Architectural Framework

Distinguishing Application, Platform and Infrastructure

Applications
10 identified GeoSpatial Applications + more agency apps...

Platform as a Service (PaaS)

- **Application Servers**: Provide the deployment environment for actual business applications with access to enablers, frameworks and runtimes, including interfaces and payload standards endorsed by the FGDC.

- **Platform Enablers**: Platform enablers provide core supporting capabilities for developing, testing and deploying code, including DBMS, Directory, Queue, Service Bus, etc. A relational database is the most common enabler example but is not present in all platforms.

- **Frameworks** provide bundled access to common behaviors and services, which applications can rely upon.

- **Libraries** are reusable code modules which can be called directly from an application. Frameworks and Libraries save time and expense freeing developers from having to build common code and behaviors.

- **Runtime Systems**: provide the execution support for developing and running the code. Examples include Java, Python, Microsoft Common Language Runtime, etc.

Infrastructure (IaaS)

- **Operating System**
- **Virtual Machines / CPU**
- **Storage**
Cloud Community Platform Service Activities
Primary Activity Cycle

Create Prototype Platforms

Prototype
- Create series of Federal Cloud Computing reference platform prototypes
- Support the wide range of target apps

Validate
- Ensure platforms work with identified agency applications

Document and Promulgate

Document
- Document best practices and lessons learned
- Document cost models and benchmarks
- Bundle the platforms and artifacts
- Promulgate to Federal Cloud Community of Interest
Cloud Community Platform Service Activities
Preliminary Platform Architecture

Basic Image
GSA Windows 2008 Server Image .NET, IIS

Open Source Platform
Linux (CentOS)

Windows Platform

Base Platforms
Open Source Additions
.NET, IIS
Java, PHP, PostGRES Tomcat, FLEX, Apache

Specialized Platforms
ArcGIS Server Geospatial Platform
Semantic Drupal
GlassFish 3, Axis, SunMQ
OpenGeo: GeoServer, GeoNetwork
THREDDS

Custom UIs and Standard APIs

Tiers (e.g. database, app server) can be split or combined as needed

Note: Software requirements for the candidate platforms were dictated by the eleven projects nominated by federal agencies. Standards are dictated by the FGDC endorsed standards list, Commonalities were identified in defining the stack. Additional software suites could be defined in the future using the same design process.
• Cost evaluation for each of the initial projects was performed using online ‘calculator’ based on data transfer, storage, CPU, and demand requirements
 • Most projects could be feasibly hosted in AWS (~$350-500/month)
 • Some projects were cost-prohibitive in the Cloud due to large data storage or transfer costs

• Amazon Web Services (EC2) was selected as the primary ‘public’ cloud computing environment for various sizes and numbers of virtual machines (AWS via Apptis is a GSA apps.gov IaaS offering on BPA)
• Dell/VMWare vCloud environment was selected for government-hosted cloud infrastructure – at USGS EROS Data Center
Project Synopsis

<table>
<thead>
<tr>
<th>Project</th>
<th>Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>NWI Wetlands Mapper</td>
<td>AWS, Windows 2008, ArcGIS Server</td>
</tr>
<tr>
<td>US Census TIGER/Line Downloads</td>
<td>AWS, Linux64 (CentOS)</td>
</tr>
<tr>
<td>Integrated Ocean Observing System Catalog and Viewer (NOAA)</td>
<td>AWS, Linux64 (CentOS), GeoNetwork</td>
</tr>
<tr>
<td>NOAA ERDDAP</td>
<td>AWS, Linux64 (CentOS), THREDDS</td>
</tr>
<tr>
<td>Project</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>USGS National Elevation Dataset (NED) service and data</td>
<td>VMWare vCloud on Dell HW, Windows 2008, ArcGIS Server</td>
</tr>
<tr>
<td>USGS National Map Map Tile Cache</td>
<td>VMWare vCloud on Dell HW, Windows 2008 or Linux64</td>
</tr>
<tr>
<td>Particles in the Cloud (NOAA) particle tracking computational service for air or water dispersion/diffusion</td>
<td>AWS, Linux64 (CentOS)</td>
</tr>
<tr>
<td>GEOSS Clearinghouse Catalog</td>
<td>AWS, Linux64 (CentOS)</td>
</tr>
<tr>
<td>USDA FSA or NRCS data service application</td>
<td>AWS, Windows 2008, ArcGIS Server</td>
</tr>
</tbody>
</table>
GeoCloud Status and Plans, as of January 2011

- Provided login credentials (encrypted key pairs) for AWS and its management interface to individuals using AWS
- Initiating image builds of OS plus base software dependencies for CentOS (RedHat) and scripting the geospatial module activation
- Scripting Windows 2008 Server using hardening guidelines used by GSA and other agencies with ESRI ArcGIS Server as image baseline
- Installation and monitoring of the deployment environment with agency-facing Web services (January-March)
- Initial public-facing Web Services (January)
Questions & Answers

Contact Information:

- Doug Nebert (ddnebert@fgdc.gov)
- Robert Patt-Corner, eGlobalTech/GSA (robert.patt-corner@gsa.gov)